Engineering vascular networks in porous polymer matrices.
نویسندگان
چکیده
Enhanced vascularization is critical to the treatment of ischemic tissues and the engineering of new tissues and organs. We have investigated whether sustained and localized delivery of vascular endothelial growth factor (VEGF) combined with transplantation of human microvascular endothelial cells (HMVECs) can be used to engineer new vascular networks. VEGF was incorporated and released in a sustained manner from porous poly(lactic-co-glycolic acid) (PLG) matrices to promote angiogenesis at the transplantation site. VEGF could be incorporated and released in a biologically active form from PLG matrices, with the majority of VEGF release (64%) occurring within 2 weeks. These matrices promoted a 260% increase in the density of host SCID mouse-derived capillaries invading the matrices after 7 days of implantation, confirming the activity of the released VEGF. HMVECs were transplanted into SCID mice on PLG matrices, and organized to form immature human-derived vessels within 3 days. Functional vessels were observed within 7 days. Importantly, when HMVECs were transplanted on VEGF-releasing matrices, a 160% increase in the density of human-derived blood vessels was observed after 14 days. These findings suggest that combining elements of vasculogenesis and angiogenesis provides a viable and novel approach to enhancing local vascularization.
منابع مشابه
Producing chitin scaffolds with controlled pore size and interconnectivity for tissue engineering
Tissue engineering utilizes cells and synthetic matrices to create new tissues. Living cells are anchorage dependent and will die if they are not provided with an adhesion substrate. Man-made scaffolds are designed to provide a structural framework for the selected cells and to facilitate the formation of new tissues. Matrix structure of the scaffold should be connective together with high poro...
متن کاملLattice Gas Automata Simulation of Adsorption Process of Polymer in Porous Media
Lattice gas automata (LGA) model is developed to simulate polymer adsorption process by adding some collision rules. The simulation result of the model is matched with batch experiment and compared with accepted isothermal adsorption equations. They show that the model is viable to perform simulation of the polymer adsorption process. The LGA model is then applied for simulating continuous poly...
متن کاملAn Experimental Study of Alkali-surfactant-polymer Flooding through Glass Micromodels Including Dead-end Pores
Chemical flooding, especially alkaline/surfactant/polymer flooding, is of increasing interest due to the world increasing oil demand. This work shows the aspects of using alkaline/surfactant/polymer as an enhanced oil recovery method in the porous media having a high dead-end pore frequency with various dead-end pore parameters (such as opening, depth, aspect ratio, and orientation). Using glas...
متن کاملOptimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices.
The engineering of functional smooth muscle (SM) tissue is critical if one hopes to successfully replace the large number of tissues containing an SM component with engineered equivalents. This study reports on the effects of SM cell (SMC) seeding and culture conditions on the cellularity and composition of SM tissues engineered using biodegradable matrices (5 x 5 mm, 2-mm thick) of polyglycoli...
متن کاملLocally enhanced angiogenesis promotes transplanted cell survival.
A developing therapy for complete or partial loss of function in various tissues and organs involves transplanting an appropriate cell population, capable of compensating for the existing deficiencies. Clinical application of this type of strategy is currently limited by the death or dedifferentiation of the transplanted cells after delivery to the recipient. A delay in thorough vascularization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research
دوره 60 4 شماره
صفحات -
تاریخ انتشار 2002